Ensemble deep learning: A review

نویسندگان

چکیده

Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep architectures are showing performance compared the shallow or traditional models. Deep ensemble combine advantages of both as well such that final model has This paper reviews state-of-art and hence serves an extensive summary for researchers. The broadly categorized into bagging, boosting, stacking, negative correlation based models, explicit/implicit ensembles, homogeneous/heterogeneous ensemble, decision fusion strategies Applications in different domains also briefly discussed. Finally, we conclude this with some potential future research directions. • categorizes discussed boosting strategies, unsupervised, semi supervised, reinforcement online/incremental, multilabel Application provides outlook towards

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

A Deep Learning Approach to Unsupervised Ensemble Learning

We show how deep learning methods can be applied in the context of crowdsourcing and unsupervised ensemble learning. First, we prove that the popular model of Dawid and Skene, which assumes that all classifiers are conditionally independent, is equivalent to a Restricted Boltzmann Machine (RBM) with a single hidden node. Hence, under this model, the posterior probabilities of the true labels ca...

متن کامل

Ensemble Robustness of Deep Learning Algorithms

The question why deep learning algorithms perform so well in practice has puzzled machine learning theoreticians and practitioners alike. However, most of well-established approaches, such as hypothesis capacity, robustness or sparseness, have not provided complete explanations, due to the high complexity of the deep learning algorithms and their inherent randomness. In this work, we introduce ...

متن کامل

Mimicking Ensemble Learning with Deep Branched Networks

This paper proposes a branched residual network for image classification. It is known that high-level features of deep neural network are more representative than lower-level features. By sharing the low-level features, the network can allocate more memory to high-level features. The upper layers of our proposed network are branched, so that it mimics the ensemble learning. By mimicking ensembl...

متن کامل

Deep Transfer Learning Ensemble for Classification

Transfer learning algorithms typically assume that the training data and the test data come from different distribution. It is better at adapting to learn new tasks and concepts more quickly and accurately by exploiting previously gained knowledge. Deep Transfer Learning (DTL) emerged as a new paradigm in transfer learning in which a deep model offer greater flexibility in extracting high-level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Applications of Artificial Intelligence

سال: 2022

ISSN: ['1873-6769', '0952-1976']

DOI: https://doi.org/10.1016/j.engappai.2022.105151